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Why Word Embeddings?
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Terminology

1 Corpus: collection of authentic text organized into dataset

2 Vocabulary (V): Set of unique words across all the i/p streams
3 Target: Representation for every word in V
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One-hot Encoding
1 |V | words encoded as binary vectors of length |V |
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One-hot encoding: Drawbacks

1 Space inefficient (e.g. 13M words in Google 1T corpus)

2 No notion of similarity (or, distance) between words
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Distributed Representations

1 Representation/meaning of a word should consider its context in the
corpus

2 Co-occurrence matrix can capture this!
size: (#words×#words)
rows: words (m), cols: context (n)
words and context can be of same or different size

3 Context can be defined as a ‘h’ word neighborhood
4 Each row (column): vectorial representation of the word (context)
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Co-occurrence matrix
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Co-occurrence matrix

1 Very sparse

2 Very high-dimensional (grows with the vocabulary size)
3 Solution:Dimensionality reduction (SVD)!

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 9



Co-occurrence matrix

1 Very sparse
2 Very high-dimensional (grows with the vocabulary size)

3 Solution:Dimensionality reduction (SVD)!

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 9



Co-occurrence matrix

1 Very sparse
2 Very high-dimensional (grows with the vocabulary size)
3 Solution:Dimensionality reduction (SVD)!

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 9



SVD on the Co-occurrence matrix

1 X = UΣV T
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i is a d-rank approximation of X
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SVD on the Co-occurrence matrix

1 Before the SVD, representations were the rows of X

2 How do we reduce the representation size with SVD ?
3 Wword = Um×k · Σk×k
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SVD on the Co-occurrence matrix

1 Wword ∈ Rm×k (k � |V | = m) are considered the representation of
the words

2 Lesser dimensions but the same similarities! (one may verify that
XXT = X̂X̂T )

3 Wcontext = V ∈ Rn×k are taken as the representations for the context
words
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Count-based vs prediction-based models

1 Techniques we have seen so far rely on the counts (or, co-occurrence
of words)

2 Next, we see prediction based models for word embeddings
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Word2Vec

1 T Mikolov et al. (2013)

2 Predict words from the context
3 Two versions: Continuous Bag of Words (CBoW) and Skip-gram

Caption
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Bag of Words (BoW)

1 Bag of Words: Collection and frequency of words
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CBoW

1 Considers the embeddings of ‘h’ words before and ‘h’ words after the
target word

2 Adds them (order is lost) for predicting the target word

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 16



CBoW

1 Considers the embeddings of ‘h’ words before and ‘h’ words after the
target word

2 Adds them (order is lost) for predicting the target word

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 16



CBoW
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CBow

1 Size of the vocabulary = m

2 Dimension of the embeddings = N
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Word Embeddings: CBoW

1 Input layer Wm×V projects the context in to N -d space

2 Representations of all the (2h) words in the context are summed
(result is an V -d context vector)
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Word Embeddings: CBoW

1 Next layer has a weight matrix W ′m×N

2 Projects the accumulated embeddings onto the vocabulary

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 21



Word Embeddings: CBoW

1 Next layer has a weight matrix W ′m×N

2 Projects the accumulated embeddings onto the vocabulary

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 21



Word Embeddings: CBoW

1 Next layer has a weight matrix W ′V×N

2 Projects the accumulated embeddings onto the vocabulary

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 22



Word Embeddings: CBoW

1 V - way classification → (after a softmax) maximizes the probability
for the target word
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Word Embeddings: CBoW

1 WN×m is the Wcontext

2 W ′m×N is the Wwords
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CBoW: issues

1 Softmax at the o/p is very expensive ŷw = exp(uc·vw)∑
w′∈V

exp(uc·vw′ )
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Word Embeddings: Skip-gram
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Word Embeddings: Skip-gram
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Word Embeddings: Skip-gram

1 Loss is the summatoin of L(θ) = −
∑2h

i=1 log(ŷwi)

2 WN×m is the Wword
3 W ′m×N is the Wcontext
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Skip-gram: Issues

1 Expensive softmax operation at the o/p (same as that of CBoW)

2 Negative sampling: subset of incorrect words participate (instead of
all)

3 Other solutions: Contrastive estimation, and hierarchical softmax
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Glove

1 Glove - Global Vectors

2 Combines the score based and predict based approaches
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Glove

1 Xij in the cooccurrence matrix encodes the global info. about words
i and j

2 Glove attempts to learn representations that are faithful to the
cooccurrence info.

3 vT
i vj = logP (j/i) = logXij − logXi

4 vT
j vi = logP (i/j) = logXij − logXj
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Glove

1 (add the two equations) vT
i vj = logXij − 1

2 logXi − 1
2 logXj

2 Since logXi and logXj depend on the words i and j, they can be
considered as the word specific biases

3 vT
i vj + bi + bj = logXij

4
∑

i,j

(
vT

i vj + bi + bj − logXij
)2
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Evaluating the embeddings

1 Semantic relatedness (compute the correlation with humans’
similarity)

2 Synonym detection
3 Analogy
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Comparison among different models

1 Difficult to judge!

2 Some studies favor the predict-based, some the cooccurrence based!!
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