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Why Word Embeddings?

ML model

IITH has been consistently ranked in the top 10 institutes in India for
Engineering according to NIRF making it one of the most coveted schools
for science and technology in the country.
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@ Corpus: collection of authentic text organized into dataset
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Terminology

@ Corpus: collection of authentic text organized into dataset

@ Vocabulary (V): Set of unique words across all the i/p streams
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@ Corpus: collection of authentic text organized into dataset
@ Vocabulary (V): Set of unique words across all the i/p streams

@ Target: Representation for every word in V
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One-hot Encoding

@ |V| words encoded as binary vectors of length |V

Dictionary Word Representation
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One-hot encoding: Drawbacks )

@ Space inefficient (e.g. 13M words in Google 1T corpus)

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 6



One-hot encoding: Drawbacks o =

@ Space inefficient (e.g. 13M words in Google 1T corpus)

@ No notion of similarity (or, distance) between words
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Distributed Representations " P e

@ Representation/meaning of a word should consider its context in the
corpus
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Distributed Representations " P e

@ Representation/meaning of a word should consider its context in the
corpus
@ Co-occurrence matrix can capture this!

o size: (#words X #words)
o rows: words (m), cols: context (n)
o words and context can be of same or different size
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Distributed Representations " P e

@ Representation/meaning of a word should consider its context in the
corpus
@ Co-occurrence matrix can capture this!

o size: (#words X #words)
o rows: words (m), cols: context (n)
o words and context can be of same or different size

@ Context can be defined as a ‘h’ word neighborhood

@ Each row (column): vectorial representation of the word (context)
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Co-occurrence matrix i

@ Very sparse
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Co-occurrence matrix b

@ Very sparse

@ Very high-dimensional (grows with the vocabulary size)
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Co-occurrence matrix

@ Very sparse
@ Very high-dimensional (grows with the vocabulary size)
@ Solution:Dimensionality reduction (SVD)!
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SVD on the Co-occurrence matrix “

@ X=UxvT
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SVD on the Co-occurrence matrix

@ X=UuxvT
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SVD on the Co-occurrence

@ X =UuxvT

° X] _
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Ul Uk
-‘l’ ‘I” mxk

@ X = Uluﬂ}? + UQUJQ’Ug +.
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matrix
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T"is a d-rank approximation of X
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SVD on the Co-occurrence matrix L

@ Before the SVD, representations were the rows of X
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SVD on the Co-occurrence matrix L

@ Before the SVD, representations were the rows of X

@ How do we reduce the representation size with SVD 7
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o 8ot rodas dad
SVD on the Co-occurrence matrix L

@ Before the SVD, representations were the rows of X
@ How do we reduce the representation size with SVD 7
@ Wiord = Unxk * Lkxk
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SVD on the Co-occurrence matrix “ o

@ Wyord € R™F (k < |V| = m) are considered the representation of
the words
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SVD on the Co-occurrence matrix

@ Wyord € R™F (k < |V| = m) are considered the representation of
the words

@ Lesser dimensions but the same similarities! (one may verify that
XxT = XXT)
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SVD on the Co-occurrence matrix " o

@ Wyord € R™F (k < |V| = m) are considered the representation of
the words

@ Lesser dimensions but the same similarities! (one may verify that
XxT = XXT)

@ Weontext = V€ R™ ¥ are taken as the representations for the context
words
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Count-based vs prediction-based mode'! R

@ Techniques we have seen so far rely on the counts (or, co-occurrence
of words)
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@
Count-based vs prediction-based models ===

@ Techniques we have seen so far rely on the counts (or, co-occurrence
of words)

@ Next, we see prediction based models for word embeddings
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@ T Mikolov et al. (2013)
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@ T Mikolov et al. (2013)

@ Predict words from the context
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Word2Vec

@ T Mikolov et al. (2013)

@ Predict words from the context
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® Two versions: Continuous Bag of Words (CBoW) and Skip-gram

Dr. Konda Reddy Mopuri

INPUT  PROJECTION
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Skip-gram

Caption
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Bag of Words (BoW) || bty oot

@ Bag of Words: Collection and frequency of words

Itis raining today ist 1

> e
raining: 1
today:1_J
Today is a Sunday. It is
also a sunny day. e
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CBoW

@ Considers the embeddings of ‘h’ words before and ‘h" words after the
target word
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CBoW

@ Considers the embeddings of ‘h’ words before and ‘h" words after the
target word

@ Adds them (order is lost) for predicting the target word

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
w(t+1)

w(t+2)

CBOW
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CBoW

The dog slept on couch

The

dog

on

couch

D
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CBow

@ Size of the vocabulary = m

Vocabulary: m words, N-d real
representation for each word

NXm

Dr. Konda Reddy Mopuri
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@ Size of the vocabulary = m
@ Dimension of the embeddings = N

Vocabulary: m words, N-d real
representation for each word

NXm
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Word Embeddings: CBoW Y ===

@ Input layer W,,,xy projects the context in to N-d space
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Word Embeddings: CBoW _ e

@ Input layer W,,,xy projects the context in to N-d space

@ Representations of all the (2h) words in the context are summed
(result is an V-d context vector)

context
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Word Embeddings: CBoW _ e

@ Input layer W« projects the context in to N-d space

@ Representations of all the (2h) words in the context are summed
(context is an V-d vector)

context

Wism Coar | = | Enar
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Word Embeddings: CBoW Y ===

@ Next layer has a weight matrix W) .
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Word Embeddings: CBoW | R

@ Next layer has a weight matrix W) .

@ Projects the accumulated embeddings onto the vocabulary

mXN

First layer Second layer
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Word Embeddings: CBoW | R

@ Next layer has a weight matrix Wi,

@ Projects the accumulated embeddings onto the vocabulary

wNXm Coxt | = w,mXN Boa | = Crxt

Scores for m-way
classification
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Word Embeddings: CBoW J S

@ V- way classification — (after a softmax) maximizes the probability
for the target word

Wiixm Coa | =2 Wixw Eua | = € m Prnxi

-
Scores for m-way

classification probabiitties
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Word Embeddings: CBoW Y ===

@ WNXm is the Wcontext
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Word Embeddings: CBoW Y ===

@ WNXm is the Wcontext
@ W/ . N is the Wyords
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CBoW: issues

el'p(uc‘vw)

@ Softmax at the o/p is very expensive ¢, = e capluey)
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Word Embeddings: Skip-gram _ e

INPUT PROJECTION  OUTPUT
w(t-2)

wit-1)

\ w(t+1)

w(t+2)

w(t) —

Skip-gram
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Word Embeddings: Skip-gram _ e

embeddings input word

Input layer

Dr. Konda Reddy Mopuri dl - 14/ Word Embeddings 27



Word Embeddings: Skip-gram _ e

embeddings input word
wNXm Im>(1 :": PNX1
Input layer
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Word Embeddings: Skip-gram

embeddings input word
H >
wNXm Im)(1 w mXN PNX1
Input layer Qutput layer
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Word Embeddings: Skip-gram

embeddings input word

H >
wNXm Im>(1 W mXxXN PNX1 :,‘: Cle
Scores for the
Input layer Qutput layer context wards
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Word Embeddings: Skip-gram

embeddings input word
~
i 3
Wi i W Pua =] Cos [558% Py
SCores forfﬁe —
Input layer Qutput layer contextwords probabilities
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Word Embeddings: Skip-gram

embeddings input word
ot
H >
wNXm Im>(1 W mXxXN PNX1 :,‘: Cle
"y
Scores for the
Input layer Qutput layer context wards
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Word Embeddings: Skip-gram D i

@ Loss is the summatoin of L(#) = — 222/:11 10g({u,)
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Word Embeddings: Skip-gram B =

@ Loss is the summatoin of L(#) = — 222/:11 10g({u,)
@ Wi is the Wiord
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Word Embeddings: Skip-gram B =

@ Loss is the summatoin of L(#) = — 222/:11 10g({u,)
@ Wi is the Wiord
Q@ W7/n><N is the WContext
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Skip-gram: Issues W

@ Expensive softmax operation at the o/p (same as that of CBoW)
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Skip-gram: Issues B

@ Expensive softmax operation at the o/p (same as that of CBoW)

@ Negative sampling: subset of incorrect words participate (instead of
all)
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Skip-gram: Issues

@ Expensive softmax operation at the o/p (same as that of CBoW)

@ Negative sampling: subset of incorrect words participate (instead of
all)
@ Other solutions: Contrastive estimation, and hierarchical softmax
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@ Glove - Global Vectors
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Glove

@ Glove - Global Vectors

@ Combines the score based and predict based approaches
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@ Xj; in the cooccurrence matrix encodes the global info. about words
7 and j
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Glove

@ Xj; in the cooccurrence matrix encodes the global info. about words
7 and j

@ Glove attempts to learn representations that are faithful to the
cooccurrence info.
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Glove

@ Xj; in the cooccurrence matrix encodes the global info. about words
7 and j

@ Glove attempts to learn representations that are faithful to the
cooccurrence info.

@ vlv; =log P(j/i) = log X;; — log X;
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@ Xj; in the cooccurrence matrix encodes the global info. about words
7 and j

@ Glove attempts to learn representations that are faithful to the
cooccurrence info.

(&2 UTUj =log P(j/i) = log X;; — log X;

@ v v; =log P(i/j) = log X;; — log X
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@ (add the two equations) v} v; = log X;; — 1log X; — % log X;
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@ (add the two equations) v} v; = log X;; — 1log X; — % log X;
@ Since log X; and log X; depend on the words 7 and j, they can be
considered as the word specific biases
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@ (add the two equations) v} v; = log X;; — 1log X; — % log X;

@ Since log X; and log X; depend on the words 7 and j, they can be
considered as the word specific biases

Q Uz-TUj + b; +b] = IOgXZ'j
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Glove

@ (add the two equations) v} v; = log X;; — 1log X; — % log X;

@ Since log X; and log X; depend on the words 7 and j, they can be
considered as the word specific biases

Q Uz-TUj +b; + b]’ = IOgXZ'j
@ Zi,j (U;IUJ‘ + bi + bj — log Xij)2
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Evaluating the embeddings " s

@ Semantic relatedness (compute the correlation with humans’
similarity)
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Evaluating the embeddings “ P e

@ Semantic relatedness (compute the correlation with humans’
similarity)
@ Synonym detection
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Evaluating the embeddings “ s

@ Semantic relatedness (compute the correlation with humans’
similarity)

@ Synonym detection

@ Analogy
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Comparison among different models )

@ Difficult to judge!
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Comparison among different models )

@ Difficult to judge!
@ Some studies favor the predict-based, some the cooccurrence based!!
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